
Building Control Emulator
Release 0.0.1

Sep 29, 2021

Contents:

1 Building Control Emulator platform 1
1.1 Docker Container . 1

2 JModelica Docker 3
2.1 Getting the JModelica emulator docker image . 3
2.2 Inside the JModelica Docker container . 4

3 Building emulator examples 9
3.1 How to run a simple example . 9
3.2 Methodology . 10
3.3 Building emulator measurements nomenclature . 12
3.4 Building emulator controllable signals nomenclature . 14
3.5 List of examples . 15

4 Building emulator controlled using the adaptive MPC example 17
4.1 How to run a building adaptive MPC example . 17

5 Indices and tables 19

Python Module Index 21

Index 23

i

ii

CHAPTER 1

Building Control Emulator platform

The building emulator is given as a Functional Mock-up Unit (FMU) and simulated using JModelica. JModelica, as
the tool to simulate and analyze the building emulator behavior, has been packaged on a Ubuntu 16.04.5 LTS machine
in a Docker container. Hence, in order to download, access and run the JModelica-specialized container, Docker needs
to be installed on the host machine.

1.1 Docker Container

For Windows 10 and Mac OS, there are specific versions of Docker desktop, that is Docker desktop for Windows,
and Docker desktop for Mac. On Ubuntu (Linux), installing Docker is less straight forward, and the procedure coudl
follow the details below.

File Script to install Docker CE on Ubuntu, which presents what the docker installation site shows at Docker installa-
tion, can be used as helper to download and install Docker CE on Ubuntu.

#!/bin/bash

Environment variables you need to set so you don't have to edit the script below.
DOCKER_CHANNEL=stable
DOCKER_COMPOSE_VERSION=1.18.0

Update the apt package index.
sudo apt-get update

Install packages to allow apt to use a repository over HTTPS.
sudo apt-get install -y \

apt-transport-https \
ca-certificates \
curl \
software-properties-common \
vim

Add Docker's official GPG key.

(continues on next page)

1

https://jmodelica.org
https://www.docker.com/products/docker-desktop
https://hub.docker.com/editions/community/docker-ce-desktop-windows
https://hub.docker.com/editions/community/docker-ce-desktop-mac
https://github.com/GRIDAPPSD/gridappsd-docker/blob/master/docker_install_ubuntu.sh
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/install/linux/docker-ce/ubuntu/

Building Control Emulator, Release 0.0.1

(continued from previous page)

curl -fsSL https://download.docker.com/linux/$(. /etc/os-release; echo "$ID")/gpg |
→˓sudo apt-key add -

Verify the fingerprint.
sudo apt-key fingerprint 0EBFCD88

Pick the release channel.
sudo add-apt-repository \

"deb [arch=amd64] https://download.docker.com/linux/$(. /etc/os-release; echo "$ID
→˓") \
$(lsb_release -cs) \
${DOCKER_CHANNEL}"

Update the apt package index.
sudo apt-get update

Install the latest version of Docker CE.
sudo apt-get install -y docker-ce

Allow your user to access the Docker CLI without needing root.
sudo /usr/sbin/usermod -aG docker $USER

Install Docker Compose.
curl -L https://github.com/docker/compose/releases/download/${DOCKER_COMPOSE_VERSION}/
→˓docker-compose-`uname -s`-`uname -m` -o /tmp/docker-compose
sudo mv /tmp/docker-compose /usr/local/bin/docker-compose
sudo chmod +x /usr/local/bin/docker-compose
sudo chown root:root /usr/local/bin/docker-compose

The script also installs Docker Composer, used to define and run a multi-container Docker application. See Compose
overview.

Warning. To be able to run the Docker CLI without needing root, you need a reboot.

2 Chapter 1. Building Control Emulator platform

https://docs.docker.com/compose/overview/
https://docs.docker.com/compose/overview/

CHAPTER 2

JModelica Docker

2.1 Getting the JModelica emulator docker image

Note. The following procedures are related to Mac OS and Ubuntu.

Once Docker desktop is installed on the host computer, to get access to the JModelica container, one could follow the
steps below. Details on the Docker commands can be found on the Docker documentation page.

1. Open a terminal window.

2. At the terminal prompt type

docker pull laurmarinovici/building_control_emulator:latest

The docker image will be downloaded on the host computer.

3. To inspect the Docker images downloaded type

docker images

should return a list of Docker images, which should include something similar to

4. To instantiate the Docker container, run

docker run -it --rm -p="127.0.0.1:5000:5000" \
--mount type=bind,source=<path to host computer folder to bind with

→˓container folder>,destination=<path to folder in the container bound to host folder>
→˓ \

--network=host --name=<container name> <image name> bash

Normally, the host computer folder bound to a folder within the container would be
→˓the folder that contains the models and the running scripts (developed or
→˓downloaded from the github repository).

5. Once the container has been created, it should show up listed when running

3

https://docs.docker.com

Building Control Emulator, Release 0.0.1

docker ps -a

2.2 Inside the JModelica Docker container

Fig. 1: Figure 1. Emulator Docker diagram

JModelica Docker container is build on an Ubuntu distribution version 16.04.6 LTS (Xenial Xerus). It contains ‘JMod-
elica‘_ and the neccessary Python modules:

• PyModelica - for compiling Modelica models intu FMUs

• PyFMI - for loading and interacting with the FMU representing the building emulator

Inside the JModelica Docker container, the building emulator is loaded and simulated/controlled using a REST (REp-
resentational State Transfer) API.

Class emulatorSetup has been implemented to define the REST API requests to perform functions such as advancing
the simulation, retrieving test case information, and calculating and reporting results.

Code documentation - emulatorSetup.py

• Acquire the list of inputs the emulator accepts as control signals

The emulator inputs are pairs of 2 values for each control signal:

– <name>_activate - that can take 0 or 1 values indicating that particular input is going to be
used for control with the given value rather than the default value

– <name>_u - that represents the actual input value that the control designer calculates

class emulatorSetup.emulatorSetup(fmuPath, fmuStep)
Class to setup the building emulator (FMU) simulation.

get_inputs()
Returns a list of control input names.

Parameters None –
Returns inputs – List of control input names.
Return type list

• Acquire the list of measurements exposed by the emulator

4 Chapter 2. JModelica Docker

https://pypi.org/project/PyModelica/
https://pypi.org/project/PyFMI/
https://restfulapi.net

Building Control Emulator, Release 0.0.1

class emulatorSetup.emulatorSetup(fmuPath, fmuStep)
Class to setup the building emulator (FMU) simulation.

get_measurements()
Returns a list of measurement names.

Parameters None –
Returns measurements – List of measurement names.
Return type list

• Advance the emulator simulation one step further after providing a set of control inputs to it with

class emulatorSetup.emulatorSetup(fmuPath, fmuStep)
Class to setup the building emulator (FMU) simulation.

advance(u)
Advances the test case model simulation forward one step.

Parameters u (dict) – Defines the control input data to be used for the step. {<in-
put_name> : <input_value>}

Returns y – Contains the measurement data at the end of the step. {<measure-
ment_name> : <measurement_value>}

Return type dict

• Obtain the name of the emulator

class emulatorSetup.emulatorSetup(fmuPath, fmuStep)
Class to setup the building emulator (FMU) simulation.

get_name()
Returns the name of the FMU being simulated.

Parameters None –
Returns name – Name of FMU being simulated.
Return type str

• Obtain the simulation time step in seconds

class emulatorSetup.emulatorSetup(fmuPath, fmuStep)
Class to setup the building emulator (FMU) simulation.

get_step()
Returns the current simulation step in seconds.

• Set the simulation time step in seconds

class emulatorSetup.emulatorSetup(fmuPath, fmuStep)
Class to setup the building emulator (FMU) simulation.

set_step(step)
Sets the simulation step in seconds.

Parameters step (int) – Simulation step in seconds.
Returns
Return type None

• Obtain full trajectories of measurements and control inputs

class emulatorSetup.emulatorSetup(fmuPath, fmuStep)
Class to setup the building emulator (FMU) simulation.

get_results()
Returns measurement and control input trajectories.

Parameters None –

2.2. Inside the JModelica Docker container 5

Building Control Emulator, Release 0.0.1

Returns Y – Dictionary of measurement and control input names and their
trajectories as lists. {‘y’:{<measurement_name>:<measurement_trajectory>},
‘u’:{<input_name>:<input_trajectory>}}

Return type dict

• Obtain key performance indicator (kpi)

class emulatorSetup.emulatorSetup(fmuPath, fmuStep)
Class to setup the building emulator (FMU) simulation.

get_kpis()
Returns KPI data.

Requires standard sensor signals.
Parameters

• None –
• Returns –
• kpi (dict) – Dictionary containing KPI names and values.

{<kpi_name>:<kpi_value>}

Script startREST instantiate the building emulator by loading the desired FMU file and setting up the length of the
time interval (in seconds) for which the emulator will run until finishing or being interrupted to receive an external
control action. It also opens up the communication channels through which HTTP requests can be made to access the
building emulator. The scripts should be called using:

python startREST.py -p ./models/wrapped.fmu -s 60

or

python startREST.py --fmuPath=./models/wrapped.fmu --fmuStep=60

Code documentation - startREST.py

class startREST.Advance(**kwargs)
Interface to advance the test case simulation.

post()
POST request with input data to advance the simulation one step and receive current measure-
ments.

class startREST.Inputs(**kwargs)
Interface to test case inputs.

get()
GET request to receive list of available inputs.

class startREST.Measurements(**kwargs)
Interface to test case measurements.

get()
GET request to receive list of available measurements.

class startREST.Results(**kwargs)
Interface to test case result data.

get()
GET request to receive measurement data.

class startREST.KPI(**kwargs)
Interface to test case KPIs.

6 Chapter 2. JModelica Docker

Building Control Emulator, Release 0.0.1

get()
GET request to receive KPI data.

class startREST.Name(**kwargs)
Interface to test case name.

get()
GET request to receive test case name.

2.2. Inside the JModelica Docker container 7

Building Control Emulator, Release 0.0.1

8 Chapter 2. JModelica Docker

CHAPTER 3

Building emulator examples

3.1 How to run a simple example

On Building Control Emulator Github repository at https://github.com/SenHuang19/BuildingControlEmulator:

• folder emulatorExamples contains:

– emulatorSetup.py - to implement the emulatorSetup class

– startREST.py - to load the building emulator/FMU and start the REST server

– folder models that includes the building emulators given as FMU files

This folder needs to be bound to a folder inside the container to have access to the FMU to simulate.

• folder simulationExamples contains:

– runSimulation.py - script to be run from the host computer to simulate the emulator inside the docker,
control it if need be, get results, or whatever else the developer wants to add. This script is to be called (as
seen later in the methodology) using

python runSimulation.py -u "http://0.0.0.0:5000" -d 200 -o 0 -l 1200 -s 300

or

python runSimulation.py --url="http://0.0.0.0:5000" --dayOfYear=200 --dayOffset=0
→˓--simDuration=1200 --fmuStep=300

where

– -u, –url represents the URL of the Docker that runs the REST server has. In this case it is
http://0.0.0.0:5000 because the emulator docker runs locally;

– -d, –dayOfYear represents the day of year when the emulator simulation starts;

– -o, –dayOffset represents the offset in seconds from second zero of the day when the simulation starts in
the day previously set;

9

https://github.com/SenHuang19/BuildingControlEmulator

Building Control Emulator, Release 0.0.1

– -l, –simDuration represents the entire simulation duration in seconds;

– -s, –fmuStep represents the period for which the FMU is being simulated before stopping and/or waiting
for external control; this value would actually overwrite the fmuStep given when instantiating the emula-
torSetup class.

3.2 Methodology

Disclaimer. This procedure has been tested and worked well on a Mac or Linux machine with Docker installed as
presented in Docker Container.

1. On a computer with docker installed, open a terminal and pull the building cnotrol emulator image.

docker pull laurmarinovici/building_control_emulator:latest

2. Clone the repository in to your home directory: /home/networkID.

git clone https://github.com/SenHuang19/BuildingControlEmulator

3. To instantiate the Docker container, run

docker run -it --rm -p="127.0.0.1:5000:5000" \
--mount type=bind,source=/home/*networkID*/BuildingControlEmulator/

→˓emulatorExamples/,destination=/mnt/examples \
--name=jmodelica_docker laurmarinovici/building_control_emulator:latest bash

where /home/networkID/ is the local folder where the building control emulator Github repository has been cloned to,
and /mnt/examples is just a folder on the already started jmodelica_container.

4. At the opened terminal inside the container:

cd /mnt/examples

5. Run

python startREST.py --fmuPath=./models/wrapped.fmu --fmuStep=60

The app should start showing

* Serving Flask app "startREST" (lazy loading)

* Environment: production
WARNING: This is a development server. Do not use it in a production deployment.
Use a production WSGI server instead.

* Debug mode: off

* Running on http://0.0.0.0:5000/ (Press CTRL+C to quit)

6. At a different terminal

cd /Users/mari009/PNNL_Projects/GitHubRepositories/BuildingControlEmulator/
→˓simulationExamples

python runSimulation.py --url="http://0.0.0.0:5000" --dayOfYear=200 --dayOffset=0 --
→˓simDuration=1200 --fmuStep=300

7. After 4 300-second intervals, within which the building emulator is simulated, the simulation ends, and the user
can observe the following output files:

10 Chapter 3. Building emulator examples

emulatorPlatform.html#docker-container

Building Control Emulator, Release 0.0.1

• in <..>/BuildingControlEmulator/simulationExamples:

– results.csv containing some sample measurements taken at the end of each 300-second interval

– measurementsList.csv containing a list of all the measurements exposed for the building model

– controlInputsList.csv containing a list of control signals that can be by an external control at the beginning
of each 300-second interval to overwrite or not the default control signals that come with the building
model:

* <control signal name>_activate - flag that would signal to the emulator whether that control value
should be overwrtten (when flag is set to 1) or disregarded (flag is set to 0)

* <control signal name>_u - the actual value of the control signal for that particular time

• in <..>/BuildingControlEmulator/emulatorExamples:

– <FMU name>_result.mat - THIS STILL NEED TO BE WORKED OUT

3.2. Methodology 11

Building Control Emulator, Release 0.0.1

3.3 Building emulator measurements nomenclature

Measurement name Description (floor # = {1, 2, 3},
zone # = {1, 2, 3, 4, 5})

Unit

time time of measurement second
TOutDryBul_y actual outside/ambient temperature Kelvin
PChi_y chiller power consumption Watt
PPum_y pump power consumption Watt
PBoiler_y boiler gas consumption Watt
floor#_Pfan_y fan power consumption on floor # Watt

floor#_conCoiEco_
oveTMix_Sig_y

actual AHU mixed air temperature
on floor #

Kelvin

floor#_conCoiEco_
oveTRet_Sig_y

actual AHU return air temperature
on floor #

Kelvin

floor#_conCoiEco_
oveTSup_Sig_y

actual AHU SUPPLY air tempera-
ture on floor #

Kelvin

floor#_conCoiEco_
mSup_y

actual AHU SUPPLY air flow rate
on floor #

kg/s

floor#_conFan_FanSpeed
_Sig_y

AHU speed on floor # Fraction

floor#_conFan_OvePre
_Sig_y

AHU static pressure on floor # Pa

floor#_conFan_
OvePreSetPoi_Sig_y

AHU static pressure set point on
floor #

Pa

floor#_zon#_TSupAir_y actual discharge air temperature in
zone # on floor #

Kelvin

floor#_zon#_mSupAir_y actual air flow in zone # on floor # Kg/s

floor#_zon#_
TSetRooCoo_u

cooling temperature set point in
zone # on floor #

Kelvin

floor#_zon#_
TSetRooHea_u

heating temperature set point in
zone # on floor #

Kelvin

floor#_zon#_OccSch occupant schedule of zone # on floor
#

Binary

floor#_zon#_PPD ppd of zone # on floor # %

12 Chapter 3. Building emulator examples

Building Control Emulator, Release 0.0.1

3.3. Building emulator measurements nomenclature 13

Building Control Emulator, Release 0.0.1

3.4 Building emulator controllable signals nomenclature

Signal name Description (floor # = {1, 2, 3},
zone # = {1, 2, 3, 4, 5})

Unit

floor#_onCoiEco_Eco_
ovePos_u

set point for damper position at the
AHU level on floor #

fraction

floor#_onCoiEco_oveBlockEco_
ovePos_u

damper position at the AHU level on
floor #

fraction

floor#_conCoiEco_oveTMix_
oveSig_y

mixed air temperature sensor mea-
surement at the AHU level on floor
#

Kelvin

floor#_oveTout_oveSig_u outside/ambient temperature sensor
measurement at AHU level on floor
#

Kelvin

floor#_conCoiEco_oveTRet_
oveSig_y

return air temperature sensor mea-
surement at the AHU level on floor
#

Kelvin

floor#_conCoiEco_oveTSupSetPoi_
oveSig_u

set point for supply air temperature
at AHU level on floor #

Kelvin

floor#_conCoiEco_oveTSup_
oveSig_y

supply air temperature sensor mea-
surement at the AHU level on floor
#

Kelvin

floor#_conCoiEco_oveBlockCooCoi
_oveLeakage_u

cooling coil leakage at AHU level
on floor #

Fraction

floor#_conCoiEco_oveBlockCooCoi
_ovePos_u

cooling coil valve position at AHU
level on floor #

Fraction

floor#_conCoiEco_CooCoi
_oveSig_u

position set point for cooling coil
valve at AHU level on floor #

Fraction

floor#_conFan_OvePre_oveSig_u static pressure sensor measurement
at AHU level on floor #

Pa

floor#_conFan_OvePreSetPoi
_oveSig_u

static pressure set point at AHU
level on floor #

Pa

floor#_hvac_oveBlockDamper
_ovePos_u

air flow relative to max in zone # on
floor #

fraction

floor#_hvac_oveBlockHeaCoi
_ovePos_u

reheat valve position in zone # on
floor #

fraction

floor#_zon#_oveTRooAir_u room air temperature sensor mea-
surement in zone # on floor #

Kelvin

floor#_zon#_oveTSetRooCoo_u cooling temperature set point in
zone # on floor #

Kelvin

floor#_zon#_oveTSetRooHea_u heating temperature set point in
zone # on floor #

Kelvin

floor#_zon#_oveOcc occupant schedule in zone # on floor
#

Binary

oveTChWSet set point of the chilled water leaving
the chilelr

Kelvin
14 Chapter 3. Building emulator examples

Building Control Emulator, Release 0.0.1

3.5 List of examples

The following examples should be found in /emulatorExamples/models/ :

• wrapped.fmu - just for exemplifying sake

• LargeOffice - NEED DESCRIPTION

• LargeOfficeFDD - NEED DESCRIPTION

3.5. List of examples 15

Building Control Emulator, Release 0.0.1

16 Chapter 3. Building emulator examples

CHAPTER 4

Building emulator controlled using the adaptive MPC example

4.1 How to run a building adaptive MPC example

For those who have access to the adaptive MPC repository, here are the steps to run an integrated building emulator
and adaptive MPC case.

1. Download the Docker images

• Building emulator Docker image at laurmarinovici/building_control_emulator:latest

• Julia 1.2.0 on Ubuntu 18.04 image at laurmarinovici/julia_1.2.0:ubuntu18

2. Start 2 terminal windows

3. At one terminal, and in a folder of your choice, clone the building emulator repository at Building Control
Emulator , which also includes the script runBuildingEmulatorDocker.sh that allows you to start the building
emulator docker as root.

4. At the other terminal, and in a folder of your choice, clone the adaptive MPC repository at Adaptive MPC ,
which also includes the runMPCDocker.sh that allows you to start adaptive MPC docker as root.

5. In the building emulator terminal, switch to /mnt/examples/ folder and run

python startREST.py -p ./models/LargeBuilding.fmu -s 60

6. In the Julia docker terminal, switch to inlineCode{/mnt/mcp} folder and run

julia simulate.jl

7. WARNING! I believe that Sen changed the wrapped.fmu model in terms of signals being communicated and
their names, which implies that the MPC code would have to be, once again, changed. Needs to be checked if
we want to use that model.

17

https://github.com/SenHuang19/BuildingControlEmulator
https://github.com/SenHuang19/BuildingControlEmulator
https://stash.pnnl.gov/scm/~mari009/adaptive-control-with-julia-1.git

Building Control Emulator, Release 0.0.1

18 Chapter 4. Building emulator controlled using the adaptive MPC example

CHAPTER 5

Indices and tables

• genindex

• modindex

• search

19

Building Control Emulator, Release 0.0.1

20 Chapter 5. Indices and tables

Python Module Index

e
emulatorSetup, 4

s
startREST, 6

21

Building Control Emulator, Release 0.0.1

22 Python Module Index

Index

A
Advance (class in startREST), 6
advance() (emulatorSetup.emulatorSetup method), 5

E
emulatorSetup (class in emulatorSetup), 4–6
emulatorSetup (module), 4

G
get() (startREST.Inputs method), 6
get() (startREST.KPI method), 6
get() (startREST.Measurements method), 6
get() (startREST.Name method), 7
get() (startREST.Results method), 6
get_inputs() (emulatorSetup.emulatorSetup

method), 4
get_kpis() (emulatorSetup.emulatorSetup method), 6
get_measurements() (emula-

torSetup.emulatorSetup method), 5
get_name() (emulatorSetup.emulatorSetup method), 5
get_results() (emulatorSetup.emulatorSetup

method), 5
get_step() (emulatorSetup.emulatorSetup method), 5

I
Inputs (class in startREST), 6

K
KPI (class in startREST), 6

M
Measurements (class in startREST), 6

N
Name (class in startREST), 7

P
post() (startREST.Advance method), 6

R
Results (class in startREST), 6

S
set_step() (emulatorSetup.emulatorSetup method), 5
startREST (module), 6

23

	Building Control Emulator platform
	Docker Container

	JModelica Docker
	Getting the JModelica emulator docker image
	Inside the JModelica Docker container

	Building emulator examples
	How to run a simple example
	Methodology
	Building emulator measurements nomenclature
	Building emulator controllable signals nomenclature
	List of examples

	Building emulator controlled using the adaptive MPC example
	How to run a building adaptive MPC example

	Indices and tables
	Python Module Index
	Index

